Ejercicios Resueltos

PAGINA EN CONSTRUCCION

CALIDAD | CAPACIDAD | INVENTARIOS | LOCALIZACIÓN | M.R.P.| PERT- CPM | PLANEACION AGREGADA | PRODUCTIVIDAD | PROGRAMACION LINEAL |

PDF

CAPACIDAD

  1. Si un sistema de producción tiene una utilización del 80% y un rendimiento del 75%, qué capacidad se necesita para producir 1000 unidades buenas al año?
  2. Si cada máquina tiene una capacidad efectiva de 34 un./mes, pero tan sólo puede obtener un rendimiento del 60% y una utilización del 70%, ¿cuántas máquinas se necesitarán para producir 900 000 un./ año?

Respuestas a Problemas de Capacidad

1.1000 un/ año/ 0.80 x 0.75= 1667 unidades

2.Es necesario producir: 900 000/ 0.6 x 0.7 = 2 142 857 un.

1 máq. = 34 un./ mes; en 12 meses = 34 un./ mes x 12 meses = 408 un./ año

408 un. = 1 máq.

2 142 857 un. = 5252 máq.

 

INVENTARIOS

  1. Dados los siguientes datos, determinar el costo total anual del sistema de inventario bajo una política óptima de ordenar:

Demanda anual (D) = 12000 un.

Costo de mantener/un./año (i * C) = $ 1

Costo de ordenar (S) = 15 $/un

Tiempo de entrega = 5 días

Existencia de seguridad: 200

Precio unitario: $ 0.10

Respuestas a Problemas de Inventarios

1.

Q opt = Ö(2* $ 15 * 12000 un )/ ($ 1 $/un)  

Q opt = 600 un.

CT = C * D + S * D/Q + i C Q/2 + (i * C) *Inv. Seg.= $ 0.10 * 12000 + $ 15 * 12000/ 600 + $ 1 * 600/2 + $ 1 * 200

CT = $ 2000

 

PRODUCTIVIDAD

  1. Emont y Mariel hacen tartas de manzana que venden a supermercados. Ellas y sus tres empleados invierten 50 horas diarias para producir 150 tartas.
  1. Carlitos SCA se caracteriza en el mercado de mercería como el “hacedor de satisfacciones” gracias a que supo imponer diseños sencillos pero sumamente apreciados por la clientela la cual llama a sus prendas simplemente “carlitos”. Trata de preservar su imagen a través de una producción de calidad invariable. Sin embargo, en un lote de 2900 prendas, producido esta semana, se encontraron 410 unidades que fueron calificadas de segunda calidad, razón por la cual se venderán con la marca Nitkron a un precio inferior en un 60% con relación a las “carlitos”. Durante dicha producción laboraron 105 trabajadores, 40 horas. Las prendas de buena calidad se vende a $120 cada una.

Se pide:

a) Determinar la productividad analizada desde el valor de la producción durante dicha semana.

b) ¿De qué otros modos podría ser analizada la productividad? ¿Usted qué piensa de ello?

c) ¿Cuál ha sido el rendimiento de la capacidad?

1.

  • Pr1 = 150 tartas/ 50 hs = 3 tartas/h
  • Pr2 = 155 tartas/ 50 hs = 3.10 tartas/h
  • (3.10– 3) tartas * 100/ 3 tartas = 3.33%

    a) Vtas: = 410 u * 48 + 2490 u * 120 = $318480

    Insumo = 105 * 40 = 4200 hh;               

    Productividad = 75,83 $/hh 

    b)  También 318 480/ 105 operarios  ó   2900/  105 * 40  (ambas de menor jerarquía que la de a))

    c)   2490/2900 = 85,86%

     

    PROGRAMACION LINEAL

    El departamento de rayos X de un hospital tiene dos máquinas, A y B, que pueden utilizarse para revelar fotografías. La capacidad máxima de procesamiento diaria de estas máquinas es A = 80 y B = 100 radiografías. El departamento debe planear procesar al menos 150 radiografías por día. Los costos de operación por radiografía son $ 4 para la máquina A y $ 3 para la máquina B. ¿Cuántas radiografías por día debe procesar cada máquina para minimizar costos?

    Resolver el problema gráfica y analíticamente.

    ¿Cuánto está dispuesto a pagar por capacidad adicional en la máquina A?

    Respuestas a Problemas de Programación Lineal

    1.

  • I. Resolución gráfica y analítica:

    Z = 4 A + 3 B = mínimo

    (1) A < ó = 80

    (2) B < ó = 100

    (3) A + B > ó = 150

    Para graficar la recta de isocostos:

    4 A + 3 B = 120 Þ A = 0; B = 40 y B = 0; A = 30

    Llevando esta recta en forma paralela hasta tocar el primer punto de la gráfica (punto más cercano al origen es el de menor costo), se encuentra que la combinación óptima es la correspondiente al punto (a).

    Para verificar que (a) es la mezcla que minimiza costos, reemplazamos los valores que toman  A y B en los puntos (a), (b) y (c) en Z:

    B = 100

    Þ A =  50

    Z (a) = 4 * 50 + 3 * 100

    Z (a) = $ 500

    B = 100

    Z (b) = 4 * 80 + 3 * 100

    Z (b) = $ 620

    A = 80

    Þ B = 70

    Z (b) = 4 * 80 + 3 * 70

    Z (b) = $ 530

    II.¿Cuánto está dispuesto a pagar por capacidad adicional en la máquina A?

    No pagaría nada por capacidad adicional en dicha máquina, ya que hay capacidad suficiente (de las 80 radiografías diarias que puede procesar, la mezcla óptima es realizar 50) - y, por otra parte, sus costos de operación son más altos que los de la máquina B -.

     

     

    <<Atrás


    Página de Inicio | Página Anterior | Artículos y Documentos | Casos y Minicasos | Otros Recursos


    Universidad Nacional de Luján
    Int. Ruta 5 y 7 -  6700 Luján - República Argentina.